Sunday, 19 March 2023
Future pedestrians may be assisted by robots and smart grilles
The robotic rover called IPA2X is designed to help children, seniors and people with disabilities cross the road safely. Experts from the Institute of Informatics, Robotics and Cybernetics at the Czech Technical University in Prague (CIIRC), the Technical University of Munich and Škoda have been working together to develop a smart assistant, focusing on a new signalling radiator grille for cars, among other things.
The project, which received support under the Urban Mobility initiative of the European Institute of Innovation and Technology (EIT), also involves a number of other companies operating in the field of autonomous driving, research institutes and technology manufacturers. Experiences and know-how from artificial intelligence and 5G mobile networks were brought to bear. The result is a robot over two metres tall that looks like a mobile traffic light.
“The robot will make its way to the middle of the pedestrian crossing. The moment it gets there, it will display a green light and pedestrians can cross. The robot is constantly monitoring its surroundings, so it can detect that a car is approaching the crossing. Its advantage is that having sensors located at a height of two metres or more enables it to see over a line of parked cars. So it heads out into the road when it sees that it’s safe to do so,” explains Michal Sojka from CIIRC.
The robot displays both information for pedestrians and warnings for approaching cars – it shows the drivers a stop sign. It also sends a warning to the car itself, which is displayed as an animation on the infotainment display. “A warning pops up that there is a pedestrian crossing ahead where something is happening. Once the people have crossed the road, the robot goes back to kerb. The moment it reaches the kerb, the warning on the dashboard disappears and the driver can continue on his way,” Michal Sojka adds. The robot rover is also expected to emit accompanying audio signals in later development versions.
Another interesting part of the project – and an innovation specifically developed by Škoda – is a signalling grille on the front of the car that lets it communicate with its surroundings. It’s quite difficult to send clear and unambiguous warnings to pedestrians from a distance, so the developers came up with a replacement for the car’s radiator grille. The grille has built-in LED strips that allow pictograms and even entire animations to be displayed.
“This is essentially a complete replacement for the Enyaq iV’s backlit Crystal Face. We made a new body with LED strip holders. The LEDs are programmable and each one can be controlled completely separately, making it possible to create animations. The final step was a lightweight diffusion layer and a cover to ensure the mask could withstand the harshest weather conditions during testing,” explains Zdeněk Herda, specialist for HMI simulations and automatic driving at Škoda Technical Development.
This is the scenario: a car approaches a pedestrian crossing and lets the pedestrians know sufficiently in advance that it has spotted them. It stops and displays, for example, green arrows to tell them they can cross. Once the pedestrians have crossed and the car is about to set off, it again displays the signal “Stop, stay off the pedestrian crossing”. Another scenario is that a car approaching the crossing cannot stop for whatever reason – then it has to send out a clear signal: “Caution, I can’t stop, do not step out onto the crossing”.
The symbols being tested include green arrows, a green figure of a man, the colours we’re all used to from traffic lights, a warning triangle or a red triangle with a cross. These are symbols everyone understands. At this juncture the project is trying out different scenarios and the possibilities that these technologies allow. As Zdeněk Herda explains, in the future there could also be static elements – for example, a traffic light at a pedestrian crossing would keep track of where people are in the area, how many people there are and whether they’re approaching the pedestrian crossing or already on it, and would send the information to approaching cars.
Experts from Škoda and the Czech Technical University have also tested the robot’s communication with cars. The testing took place last autumn in three European cities. In Milan and Modena the robot was tested near schools, while in Ljubljana the focus was on senior citizens. As well as increasing safety, the project has the additional benefit of reducing noise and pollution and also cutting costs, as it does away with the need for humans to officiate at pedestrian crossings.
The development team received valuable feedback from the Italian schoolchildren. “We learnt a lot of useful things from the children. They found it strange that the robot didn’t talk, that it didn’t have arms, or that it moved too slowly. They’ve given us lots of ideas for ways to improve the robot,” says Sojka.
Schoolchildren in other cities could be seeing robotic traffic lights fairly soon. “The testing phase should be over in 2024, with robots deployed on the streets perhaps as early as 2025,” says project coordinator Andrea Bastoni of the Technical University of Munich.
Article source: www.skoda-storyboard.com
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment